
A Bandit Approach to Online Pricing for

Heterogeneous Edge Resource Allocation

Jiaming 𝐂𝐡𝐞𝐧𝐠∗𝟏, Duong Thuy Anh Nguyen∗2,Lele Wang1, Duong Tung Nguyen2, Vijay Bhargava1

1. University of British Columbia, Vancouver, Canada

2. Arizona State University, Tempe, AZ, USA

Authors with * contribute equally to the work

Background

- Provide available edge resources for customers

Sellers

4

• Telcom central offices

• Servers at base stations (BSs)

• Idle machines in research lab

• Idle micro-DCs in campus buildings

Background

- Provide available edge resources for customers

Sellers

4

- Price those available resources

EN 1 EN 2 EN 3

EC Platform

• Telcom central offices

• Servers at base stations (BSs)

• Idle machines in research lab

• Idle micro-DCs in campus buildings

• An entity manages a set of computing resources, i.e.,

in the form of VMs

Background

- Provide available edge resources for customers

Sellers

4

EC Platform

EN 1 EN 2 EN 3

- Price those available resources to maximize profit

Buyers

- Lease/rent edge resources from EC platform

- Enhance quality of service (QoS) – reduce network delay

• Telcom central offices

• Servers at base stations (BSs)

• Idle machine in research lab

• Idle micro-DC in campus buildings

• An entity manages a set of computing resources, i.e.,

in the form of VMs

• Application/service providers: Netflix; Online gaming company

• Developers/individuals: run some intensive computational tasks

Problem statement - Multi-VM pricing scheme

5

Buyer 1 Buyer 2 Buyer 3 Buyer 4 Buyer 5

Arrival time (t ∈ 𝑇)Platform

• Offers at most one unit of each VM (i) at EN (j) with a price 𝑝𝑖,𝑗
𝑡 , where price vector : (𝑝𝑖,𝑗

𝑡) ∈ [0,1]

• The platform can offer different types of VM for buyers to choose

VM1 VM2 VM3

CPU

RAM (GB)

Storage (TB)

(2-GHz) 1 4

8 16

0.5

32

1 2

2

Type(i) i=1 i=2 i=3

r=2

r=1

r=3

Type

cores

Hardware specification sheet

Problem statement - Multi-VM pricing scheme

5

Buyer 1 Buyer 2 Buyer 3 Buyer 4 Buyer 5

Arrival time (t ∈ 𝑇)
Buyers:

• There are T potential buyers’ request arriving the platform sequentially

• Each buyer choose to procure a subset of products based on their valuations

• We define 𝑣𝑖,𝑗
𝑡 as the valuation for VM (𝑖, 𝑗) with listed price 𝑝𝑖,𝑗

𝑡

EC platform

VM1

VM2

VM1

Type (i) Price (𝑝𝑖,𝑗
𝑡 : $/unit)

𝑝1,1
𝑡

𝑝2,1
𝑡

𝑝1,3
𝑡

Location (j)

EN 1

EN 1

EN 3

Problem statement - Multi-VM pricing scheme

5

Buyer 1 Buyer 2 Buyer 3 Buyer 4 Buyer 5

Arrival time (t ∈ 𝑇)
Buyers:

• There are T potential buyers’ request arriving the platform sequentially

• Each buyer choose to procure a subset of products based on their valuations

• We define 𝑣𝑖,𝑗
𝑡 as the valuation for VM (𝑖, 𝑗) with listed price 𝑝𝑖,𝑗

𝑡

The goal of the platform is to determine the price vector 𝑝𝑖,𝑗
𝑡 to maximize its revenue

Problem statement - Multi-VM pricing scheme

6

Buyer 1 Buyer 2 Buyer 3 Buyer 4 Buyer 5

Arrival time (t ∈ 𝑇)
Buyers:

• There are T potential buyers’ request arriving the platform sequentially

• Each buyer choose to procure a subset of products based on their valuations at the same time

• We define 𝑣𝑖,𝑗
𝑡 as the valuation for VM (𝑖, 𝑗) with listed price 𝑝𝑖,𝑗

𝑡

ቐ
𝑣𝑖,𝑗

𝑡 ≥ 𝑝𝑖,𝑗
𝑡

𝑣𝑖,𝑗
𝑡 ≤ 𝑝𝑖,𝑗

𝑡

accept

reject

Problem statement - Multi-VM pricing scheme

6

Buyer 1 Buyer 2 Buyer 3 Buyer 4 Buyer 5

Arrival time (t ∈ 𝑇)
Buyers:

• There are T potential buyers’ request arriving the platform sequentially

• Each buyer choose to procure a subset of products based on their valuations

• We define 𝑣𝑖,𝑗
𝑡 as the valuation for VM (𝑖, 𝑗) with listed price 𝑝𝑖,𝑗

𝑡

• 𝑣𝑖,𝑗
𝑡 is called valuation function, which is unknown to the platform

• Vector 𝑐𝑖,𝑗
𝑡 is denoted as resource consumption vector

𝑐𝑡 = (𝑐1,1
𝑡 , … , 𝑐1,𝑁

𝑡 , 𝑐2,1
𝑡 , … , 𝑐𝑀,𝑁

𝑡) ∈ {0,1}𝑀𝑁

𝑐𝑖,𝑗
𝑡 = ቊ

1
0

If 𝑣𝑖,𝑗
𝑡 ≥ 𝑝𝑖,𝑗

𝑡

If 0 ≤ 𝑣𝑖,𝑗
𝑡 < 𝑝𝑖,𝑗

𝑡

Problem statement - Multi-VM pricing scheme

6

Buyer 1 Buyer 2 Buyer 3 Buyer 4 Buyer 5

Arrival time (t ∈ 𝑇)
Buyers:

• There are T potential buyers’ request arriving the platform sequentially

• Each buyer choose to procure a subset of products based on their valuations

• We define 𝑣𝑖,𝑗
𝑡 as the valuation for VM (𝑖, 𝑗) with listed price 𝑝𝑖,𝑗

𝑡

• 𝑣𝑖,𝑗
𝑡 is called valuation function, which is unknown to the platform

• The utility of buyer 𝒕 can be expressed as

𝑢𝑡 = ෍

𝑖

𝑀

෍

𝑗

𝑁

(𝑣𝑖,𝑗
𝑡 − 𝑝𝑖,𝑗

𝑡)𝑐𝑖,𝑗
𝑡

𝑐𝑖,𝑗
𝑡 = ቊ

1
0

If 𝑣𝑖,𝑗
𝑡 ≥ 𝑝𝑖,𝑗

𝑡

If 0 ≤ 𝑣𝑖,𝑗
𝑡 < 𝑝𝑖,𝑗

𝑡

The goal of each buyer is to maximize their own utility

Fixed pricing mechanism

7

- The platform determines a vector of static price that does not change over time

- Each buyer arrives and compare this static price (ҧ𝑝𝑖,𝑗
𝑡) with her own valuation

𝑐𝑖,𝑗
𝑡 = ቊ

1
0

If 𝑣𝑖,𝑗
𝑡 ≥ ҧ𝑝𝑖,𝑗

𝑡

If 0 ≤ 𝑣𝑖,𝑗
𝑡 < ҧ𝑝𝑖,𝑗

𝑡

However, the static price, i.e., ҧ𝑝𝑖,𝑗
𝑡 , is hard to obtain since unknown information about 𝒗

Fixed pricing mechanism

7

- The platform determines a vector of static price that does not change over time

- Each buyer arrives and compare this static price (ҧ𝑝𝑖,𝑗
𝑡) with her own valuation

𝑐𝑖,𝑗
𝑡 = ቊ

1
0

If 𝑣𝑖,𝑗
𝑡 ≥ ҧ𝑝𝑖,𝑗

𝑡

If 0 ≤ 𝑣𝑖,𝑗
𝑡 < ҧ𝑝𝑖,𝑗

𝑡

However, the static price, i.e., ҧ𝑝𝑖,𝑗
𝑡 , is hard to obtain since unknown information about 𝒗

Weakness:

• Different buyers may have varying attitudes even towards the same type of VM

• Static pricing scheme ignores the value of past observations.

• The determined price is less likely to maximize the total reward

Fixed pricing mechanism

7

- The platform determines a vector of static price that does not change over time

- Each buyer arrives and compare this static price (ҧ𝑝𝑖,𝑗
𝑡) with her own valuation

𝑐𝑖,𝑗
𝑡 = ቊ

1
0

If 𝑣𝑖,𝑗
𝑡 ≥ ҧ𝑝𝑖,𝑗

𝑡

If 0 ≤ 𝑣𝑖,𝑗
𝑡 < ҧ𝑝𝑖,𝑗

𝑡

However, the static price, i.e., ҧ𝑝𝑖,𝑗
𝑡 , is hard to obtain since unknown information about 𝒗

Weakness:

• Different buyers may have varying attitudes even towards the same type of VM

• Static scheme ignores the value of past observations.

• The determined price is less likely to maximize the total reward

Motivation:

• The platform aims to determine a “policy” to associate its decisions on price 𝑝𝑖,𝑗
𝑡

 using past observations ((𝑝1, 𝑐1),(𝑝2, 𝑐2),…,(𝑝𝑡−1, 𝑐𝑡−1))

Online posted pricing scheme

8

Goal: design online posted pricing scheme that allows the platform to make online decisions

with performance guarantees.

- Dynamic protocol:

1. The platform must determine the price of each VM according to metric

2. Each buyer 𝑡 arrives the platform one by one and compares its price for each VM with her valuation

• If 𝑝𝑖,𝑗
𝑡 < 𝑣𝑖,𝑗

𝑡 , buyer (t) will purchase one unit of the VM, otherwise, reject;

3. Update the cumulative reward and resource consumption 𝑐𝑡 only if making a sale;

- Solution: cast this dynamic edge resource pricing as a Multi-armed bandit problem

Recap:

11

• 𝒑𝒊,𝒋
𝒕 ∈ 𝑝𝑖,𝑗

𝑡,1, 𝑝𝑖,𝑗
𝑡,2, 𝑝𝑖,𝑗

𝑡,3, … … , 𝑝𝑖,𝑗
𝑡,𝑉

: finite action space for the price, where 𝑣 represents the different price options/levels

• 𝒓𝒕 ∈ [0,1]: in round t/when buyer t arrives.
𝒓𝒕 = ෍

𝑖

𝑀

෍

𝑗

𝑁

𝑝𝑖,𝑗
𝑡 𝑐𝑖,𝑗

𝑡

1 2 3 t T

𝒓𝟏(𝟑)

𝒓𝟐(𝟒)

𝒓𝟑(𝟓) 𝒓𝒕(𝟏𝟎)

𝒓𝑻(𝟖)

……

Cumulative reward

• Goal: maximize the expected cumulative reward

• Question: which arm to select in each round ?

• Challenge: exploitation vs. exploration?

Regret Optimal Algorithm

12

• Reward maximization Regret minimization

• Lower bound: 𝑅𝑒𝑔𝑇 = Ω(𝑙𝑜𝑔𝑇) [Lai & Robbins ‘85]

max E 𝑟𝑡(𝑝, 𝜇) min ෍

𝑡

𝑇

E 𝑟𝑡(𝑝∗, 𝜇 − E [෍

𝑡

𝑇

𝑟𝑡(𝑝, 𝜇)]

Regret: 𝑅𝑒𝑔𝑇

Regret Optimal Algorithm

12

• Reward maximization Regret minimization

• Lower bound: 𝑅𝑒𝑔𝑇 = Ω(𝑙𝑜𝑔𝑇) [Lai & Robbins ‘85]

• Regret optimal algorithms (𝑅𝑒𝑔𝑇 = Θ (𝑙𝑜𝑔𝑇))

➢ Upper-Confidence-Bound (UCB) [Lai & Robbins ‘85, Auer et al. ‘02]

➢ Epsilon greedy [Lai & Robbins ‘85, Sutton & Barto ‘98]

➢ Thompson sampling [Thompson ‘33, Agrawal & Goyal ‘12]

max E 𝑟𝑡(𝑝, 𝜇) min ෍

𝑡

𝑇

E 𝑟𝑡(𝑝∗, 𝜇 − E [෍

𝑡

𝑇

𝑟𝑡(𝑝, 𝜇)]

Regret: 𝑅𝑒𝑔𝑇

Recap: UCB algorithm

13

• 𝑛𝑡 𝑝 : number of times price vector 𝑝 is selected up to round 𝑡

• Ƹ𝑟𝑡 𝑝 : empirical (mean) reward of price vector p at round 𝑡 (vs. 𝑟(𝑝) true (mean) reward)

UCB Algorithm: In round 𝑡, pull the arm that maximizes the following

• UCB index

• Why UCB works?

• Chernoff – Hoeffding inequality states: p 𝑟𝑝 − Ƹ𝑟𝑝 < 𝜖 < 𝑒−2𝑛𝑡𝜖2

 p 𝑟𝑝 > Ƹ𝑟𝑝 +
2 log 𝑡

𝑛𝑡 𝑝
< 1 −

1

𝑡4

Ƹ𝑟𝑡(𝑝) +
2 log 𝑡

𝑛𝑡 𝑝

Contributions

10

• Modeling:

1. Online detail-free posted pricing mechanism for multi-VM problem. (vs. single item)

2. Consider computing power of VM and their geographical locations. (consider price as price)

• Algorithm:

1. Derive

2. Eliminate the need for prior knowledge of the demand distribution (distribution-free)

3. Ensure truthfulness as the online posted price is independent of the newly arrived buyer’s valuation

• Simulations:

1. Performance comparison over three different scenarios

2. Run-time analysis and comparison

KL-UCB Algorithm

14

Weakness:

• The UCB algorithm can perform suboptimally when r.v is not sub-Guassian

KL-UCB

• The algorithm selects the available price vector 𝒑 with the highest 𝐔𝐂𝐁𝐩,𝐭
𝐊𝐋

𝐔𝐂𝐁𝐩,𝐭
𝐊𝐋 = max 𝑞 ∈ 0,1 : 𝑑 Ƹ𝑟𝑡 𝑝 , 𝑞 𝑛𝑡 𝑝 ≤ 𝑓(𝑡)

KL-UCB Algorithm

14

Weakness:

• The UCB algorithm can perform suboptimally when r.v is not sub-Guassian

KL-UCB

• The algorithm selects the available price vector 𝒑 with the highest 𝐔𝐂𝐁𝐩,𝐭
𝐊𝐋

𝐔𝐂𝐁𝐩,𝐭
𝐊𝐋 = max 𝑞 ∈ 0,1 : 𝑑 Ƹ𝑟𝑡 𝑝 , 𝑞 𝑛𝑡 𝑝 ≤ 𝑓(𝑡)

𝑑 Ƹ𝑟𝑡 𝑝 , 𝑞 : KL divergence between two probability distributions

▪ Bernoulli distributions with parameters (𝑢, 𝑣)

 𝑑 𝑢, 𝑣 = 𝑢 𝑙𝑜𝑔
𝑢

𝑣
+ 1 − 𝑢 𝑙𝑜𝑔

1−𝑢

1−𝑣

• Exponential distribution: with parameters (𝑢, 𝑣)

• 𝑑 𝑢, 𝑣 =
𝑢

𝑣
− 1 − log(

𝑢

𝑣
)

KL-UCB Algorithm

14

Weakness:

• The UCB algorithm can perform suboptimally when r.v is not sub-Guassian

KL-UCB

• The algorithm selects the available price vector 𝒑 with the highest 𝐔𝐂𝐁𝐩,𝐭
𝐊𝐋

𝐔𝐂𝐁𝐩,𝐭
𝐊𝐋 = max 𝑞 ∈ 0,1 : 𝑑 Ƹ𝑟𝑡 𝑝 , 𝑞 𝑛𝑡 𝑝 ≤ 𝑓(𝑡)

Observe the consumption vector 𝑐𝑡 and reward 𝑟𝑡

Min-max optimal strategy (MOSS)

15

MOSS

• The algorithm selects the available price vector 𝒑 with the highest 𝐔𝐂𝐁𝐩,𝐭
𝐌𝐎𝐒𝐒

𝐔𝐂𝐁𝐩,𝐭
𝐌𝐎𝐒𝐒 = Ƹ𝑟𝑡(𝑝) +

max{log
𝑇

𝐾𝑛𝑡 𝑝
, 0}

𝑛𝑡 𝑝

Min-max optimal strategy (MOSS)

15

MOSS

• The algorithm selects the available price vector 𝒑 with the highest 𝐔𝐂𝐁𝐩,𝐭
𝐌𝐎𝐒𝐒

𝐔𝐂𝐁𝐩,𝐭
𝐌𝐎𝐒𝐒 = Ƹ𝑟𝑡(𝑝) +

log
𝑇

𝐾𝑛𝑡 𝑝

𝑛𝑡 𝑝

• For the others, their index is an UCB on their mean reward.

𝐔𝐂𝐁𝐩,𝐭
𝐌𝐎𝐒𝐒 = Ƹ𝑟𝑡(𝑝)

• The index of an arm that has been drawn more than
𝑛

𝐾
 times is

simply the empirical mean of the reward;

Min-max optimal strategy (MOSS)

15

MOSS

• The algorithm selects the available price vector 𝒑 with the highest 𝐔𝐂𝐁𝐩,𝐭
𝐌𝐎𝐒𝐒

𝐔𝐂𝐁𝐩,𝐭
𝐌𝐎𝐒𝐒 = Ƹ𝑟𝑡(𝑝) +

max{log
𝑇

𝐾𝑛𝑡 𝑝
, 0}

𝑛𝑡 𝑝

Observe the consumption vector 𝑐𝑡 and reward 𝑟𝑡

Simulation

16

Simulation setup:

• T = 100000 buyers

• M = 3 types of VM

• N = 3 edge nodes (ENs)

• K = 20 pricing options (possible price vector)

Simulation

16

Simulation setup:

• T = 100000 buyers

• M = 3 types of VM

• N = 3 edge nodes (ENs)

• K = 20 pricing options (possible price vector)

• Three different scenarios to simulate buyer’s valuation (𝒗𝒕) :

✓ Uniform distribution: U[0,1]

✓ Gaussian: with mean 𝜇 = 0.2 and var 𝜎 = 0.2

✓ Exponential: with mean 𝜇 =
1

𝜆
= 0.2

Simulation

16

Simulation setup:

• T = 100000 buyers

• M = 3 types of VM

• N = 3 edge nodes (ENs)

• K = 20 pricing options (possible price vector)

• Three different scenarios to simulate buyer’s valuation (𝒗𝒕) :

✓ Uniform distribution: U[0,1]

✓ Gaussian: with mean 𝜇 = 0.2 and var 𝜎 = 0.2

✓ Exponential: with mean 𝜇 =
1

𝜆
= 0.2

• Three baseline benchmarks
➢ Upper-Confidence-Bound (UCB) [Lai & Robbins ‘85, Auer et al. ‘02]

➢ Epsilon greedy [Lai & Robbins ‘85, Sutton & Barto ‘98]

➢ Thompson sampling [Thompson ‘33, Agrawal & Goyal ‘12]

Simulation

16

Simulation setup:

• T = 100000 buyers

• M = 3 types of VM

• N = 3 edge nodes (ENs)

• K = 20 pricing options (possible price vector)

• Three different scenarios to simulate buyer’s valuation (𝒗𝒕) :

✓ Uniform distribution: U[0,1]

✓ Gaussian: with mean 𝜇 = 0.2 and var 𝜎 = 0.2

✓ Exponential: with mean 𝜇 =
1

𝜆
= 0.2

• Three baseline benchmarks
➢ Upper-Confidence-Bound (UCB) [Lai & Robbins ‘85, Auer et al. ‘02]

➢ Epsilon greedy [Lai & Robbins ‘85, Sutton & Barto ‘98]

➢ Thompson sampling [Thompson ‘33, Agrawal & Goyal ‘12]

• Performance metrices
➢ Cumulative reward (higher - better)

➢ Cumulative sum of obtained reward from each round

➢ Cumulative regret (lower - better)

➢ The reward difference between optimal arm and selected arm.

18

Gaussian: with mean 𝜇 = 0.2 and var 𝜎 = 0.2

18

Gaussian: with mean 𝜇 = 0.2 and var 𝜎 = 0.2

• TS achieve highest cumulative reward and lowest cumulative regret

• KL-UCB and MOSS also perform well compared to TS

• KL-UCB and TS enjoy flatter and lower cumulative regret compared to other schemes

17

Uniform distribution: U[0,1]

• TS achieve highest cumulative reward and lowest cumulative regret

• KL-UCB enjoy faster convergence rate of the cumulative regret

19

Exponential: with mean 𝜇= 1/𝜆 =0.2

• KLUCB and MOSS achieves best performance

compared to other algorithms with the exponential

scenario

Optimal arm Suboptimal arm

• Higher doesn’t always mean better

• TS suggests a suboptimal arm which lead to a larger

cumulative regret

• MOSS picked the optimal price vector more often than

KLUCB

19

Summary

• The proposed KL-UCB and MOSS based pricing scheme perform well over all scenarios in terms of

cumulative regret and cumulative reward.

• TS performs optimally when dealing with uniform and Gaussian distribution but perform poorly on

exponential distributions

20

Run-time results/setup

Number of arms (K) 100 200 300 400 500

UCB (sec) 2.76 3.75 5.04 7.62 12.76

EG (sec) 2.51 4.35 6.36 9.77 19.12

TS (sec) 25.93 49.87 74.21 97.28 120.38

KL-UCB (sec) 20.11 40.31 59.89 82.49 101.57

MOSS (sec) 3.11 4.33 6.94 7.84 12.72

• Run-time = Total execution time for total 100,000 buyers

• Take average run-time over 500 instances

• K = [100,500]

1: All the experiments are implemented in MATLAB on a desktop with an Intel Core i7-11700KF CPU and 16BG RAM

20

Run-time analysis

1: All the experiments are implemented in MATLAB on a desktop with an Intel Core i7-11700KF CPU and 16BG RAM

Number of arms (K) 100 200 300 400 500

UCB (sec) 2.76 3.75 5.04 7.62 12.76

EG (sec) 2.51 4.35 6.36 9.77 19.12

TS (sec) 25.93 49.87 74.21 97.28 120.38

KL-UCB (sec) 20.11 40.31 59.89 82.49 101.57

MOSS (sec) 3.11 4.33 6.94 7.84 12.72

More time

• Larger price option space consumes more time

20

Run-time comparison

Number of arms (K) 100 200 300 400 500

UCB (sec) 2.76 3.75 5.04 7.62 12.76

EG (sec) 2.51 4.35 6.36 9.77 19.12

TS (sec) 25.93 49.87 74.21 97.28 120.38

KL-UCB (sec) 20.11 40.31 59.89 82.49 101.57

MOSS (sec) 3.11 4.33 6.94 7.84 12.72

1. MOSS proves to be more computationally efficient

❑ MOSS improves the performance of original UCB but still keep the original

index-based format.

20

Run-time comparisons

Number of arms (K) 100 200 300 400 500

UCB (sec) 2.76 3.75 5.04 7.62 12.76

EG (sec) 2.51 4.35 6.36 9.77 19.12

TS (sec) 25.93 49.87 74.21 97.28 120.38

KL-UCB (sec) 20.11 40.31 59.89 82.49 101.57

MOSS (sec) 3.11 4.33 6.94 7.84 12.72

1. MOSS proves to be more computationally efficient

❑ MOSS improves the performance of original UCB but still keep the original

index-based format.

2. KL-UCB incurs a higher computational cost

❑ This process involves solving an optimization problem and computing the KL

divergence between the estimated and prior distributions

21

Summary

• Incurs a higher computational cost when number of arms become larger

• Distribution-free

• Enjoy a lower and faster convergence rate of the cumulative regret

compared to MOSS

KL-UCB

MOSS
• Achieve the best distribution-free regret of 𝑇𝐾 for stochastic bandits

• Provide a unique UCB estimate based on the empirical mean reward

• Computationally efficient

• Higher cumulative regret/ slower convergence rate of regret

Conclusion

22

✓ Cast the dynamic pricing for VM problem into an MAB problem

✓ Presented two novel online posted pricing mechanisms for allocating heterogeneous edge resources

❑ Without prior knowledge of demand distribution

✓ Simulations

❑ Good performance in both cumulative reward and cumulative regret

❑ Time complexity analysis when size of arms is large

Conclusion

21

UCB algorithm

13

• 𝑛𝑡 𝑝 : number of times price vector 𝑝 is selected up to round 𝑡

• Ƹ𝑟𝑡(𝑝): empirical (mean) reward of price vector p at round 𝑡

• 𝑅𝑡: denotes the accumulative sum of reward up to time 𝑡

Ƹ𝑟𝑡 𝑝 =
𝑅𝑡

𝑛𝑡 𝑝
=

σ𝜏=1
𝑡 𝑟𝜏(𝑝)

𝑛𝑡 𝑝

UCB algorithm

13

• 𝑛𝑡 𝑝 : number of times price vector 𝑝 is selected up to round 𝑡

• Ƹ𝑟𝑡(𝑝): empirical mean of reward for arm 𝑝 at time 𝑡 (vs. 𝑟𝑡(𝑝) true mean)

𝑟𝑡(𝑝) Ƹ𝑟𝑡(𝑝)

Upper Confidence Bound

Problem formulation

11

• 𝒑𝒊,𝒋
𝒕 ∈ 𝑝𝑖,𝑗

𝑡,1, 𝑝𝑖,𝑗
𝑡,2, 𝑝𝑖,𝑗

𝑡,3, … … , 𝑝𝑖,𝑗
𝑡,𝑉

: finite action space for the price, where 𝑣 represents the different price options/levels

• 𝒓𝒕 ∈ [0,1]: in round t/when buyer t arrives.

𝑝𝑖,𝑗
𝑡,1 < 𝑝𝑖,𝑗

𝑡,2 < 𝑝𝑖,𝑗
𝑡,3 < … < 𝑝𝑖,𝑗

𝑡,𝑉

𝒓𝒕 = ෍

𝑖

𝑀

෍

𝑗

𝑁

𝑝𝑖,𝑗
𝑡 𝑐𝑖,𝑗

𝑡

1 2 3 t T

𝒓𝟏(𝟑)

Problem formulation

11

• 𝒑𝒊,𝒋
𝒕 ∈ 𝑝𝑖,𝑗

𝑡,1, 𝑝𝑖,𝑗
𝑡,2, 𝑝𝑖,𝑗

𝑡,3, … … , 𝑝𝑖,𝑗
𝑡,𝑉

: finite action space for the price, where 𝑣 represents the different price options/levels

• 𝒓𝒕 ∈ [0,1]: in round t/when buyer t arrives.

𝑝𝑖,𝑗
𝑡,1 < 𝑝𝑖,𝑗

𝑡,2 < 𝑝𝑖,𝑗
𝑡,3 < … < 𝑝𝑖,𝑗

𝑡,𝑉

𝒓𝒕 = ෍

𝑖

𝑀

෍

𝑗

𝑁

𝑝𝑖,𝑗
𝑡 𝑐𝑖,𝑗

𝑡

1 2 3 t T

𝒓𝟏(𝟑)

𝒓𝟐(𝟒)

Problem formulation

11

• 𝒑𝒊,𝒋
𝒕 ∈ 𝑝𝑖,𝑗

𝑡,1, 𝑝𝑖,𝑗
𝑡,2, 𝑝𝑖,𝑗

𝑡,3, … … , 𝑝𝑖,𝑗
𝑡,𝑉

: finite action space for the price, where 𝑣 represents the different price options/levels

• 𝒓𝒕 ∈ [0,1]: in round t/when buyer t arrives.

𝑝𝑖,𝑗
𝑡,1 < 𝑝𝑖,𝑗

𝑡,2 < 𝑝𝑖,𝑗
𝑡,3 < … < 𝑝𝑖,𝑗

𝑡,𝑉

𝒓𝒕 = ෍

𝑖

𝑀

෍

𝑗

𝑁

𝑝𝑖,𝑗
𝑡 𝑐𝑖,𝑗

𝑡

1 2 3 t T

𝒓𝟏(𝟑)

𝒓𝟐(𝟒)

𝒓𝟑(𝟓)

Problem formulation

11

• 𝒑𝒊,𝒋
𝒕 ∈ 𝑝𝑖,𝑗

𝑡,1, 𝑝𝑖,𝑗
𝑡,2, 𝑝𝑖,𝑗

𝑡,3, … … , 𝑝𝑖,𝑗
𝑡,𝑉

: finite action space for the price, where 𝑣 represents the different price options/levels

• 𝒓𝒕 ∈ [0,1]: in round t/when buyer t arrives.

𝑝𝑖,𝑗
𝑡,1 < 𝑝𝑖,𝑗

𝑡,2 < 𝑝𝑖,𝑗
𝑡,3 < … < 𝑝𝑖,𝑗

𝑡,𝑉

𝒓𝒕 = ෍

𝑖

𝑀

෍

𝑗

𝑁

𝑝𝑖,𝑗
𝑡 𝑐𝑖,𝑗

𝑡

1 2 3 t T

𝒓𝟏(𝟑)

𝒓𝟐(𝟒)

𝒓𝟑(𝟓) 𝒓𝒕(𝟏𝟎)

……

Problem formulation

4

• 𝒑𝒊,𝒋
𝒕 ∈ 𝑝𝑖,𝑗

𝑡,1, 𝑝𝑖,𝑗
𝑡,2, 𝑝𝑖,𝑗

𝑡,3, … … , 𝑝𝑖,𝑗
𝑡,𝑉

: finite action space for the price, where 𝑣 represents the different price options/levels

• 𝒓𝒕 ∈ [0,1]: in round t/when buyer t arrives.

𝑝𝑖,𝑗
𝑡,1 < 𝑝𝑖,𝑗

𝑡,2 < 𝑝𝑖,𝑗
𝑡,3 < … < 𝑝𝑖,𝑗

𝑡,𝑉

𝒓𝒕 = ෍

𝑖

𝑀

෍

𝑗

𝑁

𝑝𝑖,𝑗
𝑡 𝑐𝑖,𝑗

𝑡

1 2 3 t T

𝒓𝟏(𝟑)

𝒓𝟐(𝟒)

𝒓𝟑(𝟓) 𝒓𝒕(𝟏𝟎)

𝒓𝑻(𝟖)

……

Dynamic pricing scheme

9

𝝀𝒑: fractional relaxation for the number of buyers by which a given price 𝑝 is accepted.

We can write this dynamic pricing problem in the form of the linear programming problem, denoted by LP

Dynamic pricing scheme

9

𝝀𝒑: fractional relaxation for the number of buyers by which a given price 𝑝 is accepted.

We can write this dynamic pricing problem in the form of the linear programming problem, denoted by LP

max
𝜆

𝜆𝑝 𝑟(𝑝, 𝜇)

𝑠. 𝑡. ෍

𝑝 ∈𝑃

𝜆𝑝 𝑐𝑖,𝑗 𝑝, 𝜇 ≤ 𝐶𝑖,𝑗 , ∀ 𝑖, 𝑗

𝜆𝑝 ≥ 0, ∀ p

෍

𝑝 ∈𝑃

𝑐𝑖,𝑗 𝑝, 𝜇 ≤ 𝑇

Dynamic pricing scheme

4

𝝀𝒑: fractional relaxation for the number of buyers by which a given price 𝑝 is accepted.

We can write this dynamic pricing problem in the form of the linear programming problem, denoted by LP

max
𝜆

𝜆𝑝 𝑟(𝑝, 𝜇)

𝑠. 𝑡. ෍

𝑝 ∈𝑃

𝜆𝑝 𝑐𝑖,𝑗 𝑝, 𝜇 ≤ 𝐶𝑖,𝑗 , ∀ 𝑖, 𝑗

𝜆𝑝 ≥ 0, ∀ p

෍

𝑝 ∈𝑃

𝑐𝑖,𝑗 𝑝, 𝜇 ≤ 𝑇

Resource capacity constraint for each type VM

Dynamic pricing scheme

9

𝝀𝒑: fractional relaxation for the number of buyers by which a given price 𝑝 is accepted.

We can write this dynamic pricing problem in the form of the linear programming problem, denoted by LP

max
𝜆

𝜆𝑝 𝑟(𝑝, 𝜇)

𝑠. 𝑡. ෍

𝑝 ∈𝑃

𝜆𝑝 𝑐𝑖,𝑗 𝑝, 𝜇 ≤ 𝐶𝑖,𝑗 , ∀ 𝑖, 𝑗

𝜆𝑝 ≥ 0, ∀ p

෍

𝑝 ∈𝑃

𝑐𝑖,𝑗 𝑝, 𝜇 ≤ 𝑇
Time runs out/ no more buyers

Dynamic pricing scheme

9

max
𝜆

𝜆𝑝 𝑟(𝑝, 𝜇)

𝑠. 𝑡. ෍

𝑝 ∈𝑃

 𝑐𝑖,𝑗 𝑝, 𝜇 ≤ 𝑇 , ∀ 𝑖, 𝑗

𝜆𝑝 ≥ 0, ∀ p

Unlimited case (𝑇 ≪ 𝐶𝑖,𝑗) => reduce the problem into the following LP

Resource capacity constraint (𝐶𝑖,𝑗) is limited in practice.

For simplicity, we consider unlimited case where 𝑇 ≪ 𝐶𝑖,𝑗

	Default Section
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

	Backup
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

