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Background

- Provide available edge resources for customers

Sellers

4

EC Platform

EN 1 EN 2 EN 3

- Price those available resources to maximize profit

Buyers

- Lease/rent edge resources from EC platform

- Enhance quality of service (QoS) – reduce network delay

• Telcom central offices

• Servers at base stations (BSs)

• Idle machine in research lab

• Idle micro-DC in campus buildings

• An entity manages a set of computing resources, i.e., 

in the form of VMs

• Application/service providers: Netflix; Online gaming company 

• Developers/individuals: run some intensive computational tasks
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Buyer 1 Buyer 2 Buyer 3 Buyer 4 Buyer 5

Arrival time (t ∈ 𝑇)Platform

• Offers at most one unit of each VM (i) at EN (j) with a price 𝑝𝑖,𝑗
𝑡 , where price vector : (𝑝𝑖,𝑗

𝑡 ) ∈ [0,1]

• The platform can offer different types of VM for buyers to choose
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Buyer 1 Buyer 2 Buyer 3 Buyer 4 Buyer 5

Arrival time (t ∈ 𝑇)
Buyers:

• There are T potential buyers’ request arriving the platform sequentially

• Each buyer choose to procure a subset of products based on their valuations 

• We define 𝑣𝑖,𝑗
𝑡  as the valuation for VM (𝑖, 𝑗) with listed price 𝑝𝑖,𝑗

𝑡

EC platform
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Type (i) Price (𝑝𝑖,𝑗
𝑡 : $/unit)
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Buyer 1 Buyer 2 Buyer 3 Buyer 4 Buyer 5

Arrival time (t ∈ 𝑇)
Buyers:

• There are T potential buyers’ request arriving the platform sequentially

• Each buyer choose to procure a subset of products based on their valuations 

• We define 𝑣𝑖,𝑗
𝑡  as the valuation for VM (𝑖, 𝑗) with listed price 𝑝𝑖,𝑗

𝑡

The goal of the platform is to determine the price vector 𝑝𝑖,𝑗
𝑡  to maximize its revenue
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Buyer 1 Buyer 2 Buyer 3 Buyer 4 Buyer 5

Arrival time (t ∈ 𝑇)
Buyers:

• There are T potential buyers’ request arriving the platform sequentially

• Each buyer choose to procure a subset of products based on their valuations at the same time 

• We define 𝑣𝑖,𝑗
𝑡  as the valuation for VM (𝑖, 𝑗) with listed price 𝑝𝑖,𝑗

𝑡

ቐ
𝑣𝑖,𝑗

𝑡 ≥ 𝑝𝑖,𝑗
𝑡

𝑣𝑖,𝑗
𝑡 ≤ 𝑝𝑖,𝑗

𝑡

accept

reject
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Buyer 1 Buyer 2 Buyer 3 Buyer 4 Buyer 5

Arrival time (t ∈ 𝑇)
Buyers:

• There are T potential buyers’ request arriving the platform sequentially

• Each buyer choose to procure a subset of products based on their valuations 

• We define 𝑣𝑖,𝑗
𝑡  as the valuation for VM (𝑖, 𝑗) with listed price 𝑝𝑖,𝑗

𝑡

• 𝑣𝑖,𝑗
𝑡  is called valuation function, which is unknown to the platform

• Vector 𝑐𝑖,𝑗
𝑡  is denoted as resource consumption vector

𝑐𝑡 = (𝑐1,1
𝑡 , … , 𝑐1,𝑁

𝑡 , 𝑐2,1
𝑡 , … , 𝑐𝑀,𝑁

𝑡 ) ∈ {0,1}𝑀𝑁

𝑐𝑖,𝑗
𝑡 = ቊ

1
0

If 𝑣𝑖,𝑗
𝑡 ≥ 𝑝𝑖,𝑗

𝑡

If 0 ≤ 𝑣𝑖,𝑗
𝑡 < 𝑝𝑖,𝑗

𝑡



Problem statement - Multi-VM pricing scheme

6

Buyer 1 Buyer 2 Buyer 3 Buyer 4 Buyer 5

Arrival time (t ∈ 𝑇)
Buyers:

• There are T potential buyers’ request arriving the platform sequentially

• Each buyer choose to procure a subset of products based on their valuations 

• We define 𝑣𝑖,𝑗
𝑡  as the valuation for VM (𝑖, 𝑗) with listed price 𝑝𝑖,𝑗

𝑡

• 𝑣𝑖,𝑗
𝑡  is called valuation function, which is unknown to the platform

• The utility of buyer 𝒕 can be expressed as 

𝑢𝑡 = ෍

𝑖

𝑀

෍

𝑗

𝑁

(𝑣𝑖,𝑗
𝑡  − 𝑝𝑖,𝑗

𝑡 )𝑐𝑖,𝑗
𝑡

𝑐𝑖,𝑗
𝑡 = ቊ

1
0

If 𝑣𝑖,𝑗
𝑡 ≥ 𝑝𝑖,𝑗

𝑡

If 0 ≤ 𝑣𝑖,𝑗
𝑡 < 𝑝𝑖,𝑗

𝑡

The goal of each buyer is to maximize their own utility 
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- The platform determines a vector of static price that does not change over time 

- Each buyer arrives and compare this static price ( ҧ𝑝𝑖,𝑗
𝑡 ) with her own valuation

𝑐𝑖,𝑗
𝑡 = ቊ

1
0

If 𝑣𝑖,𝑗
𝑡 ≥ ҧ𝑝𝑖,𝑗

𝑡

If 0 ≤ 𝑣𝑖,𝑗
𝑡 < ҧ𝑝𝑖,𝑗

𝑡

However, the static price, i.e., ҧ𝑝𝑖,𝑗
𝑡 , is hard to obtain since unknown information about 𝒗
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- The platform determines a vector of static price that does not change over time 

- Each buyer arrives and compare this static price ( ҧ𝑝𝑖,𝑗
𝑡 ) with her own valuation

𝑐𝑖,𝑗
𝑡 = ቊ

1
0

If 𝑣𝑖,𝑗
𝑡 ≥ ҧ𝑝𝑖,𝑗

𝑡

If 0 ≤ 𝑣𝑖,𝑗
𝑡 < ҧ𝑝𝑖,𝑗

𝑡

However, the static price, i.e., ҧ𝑝𝑖,𝑗
𝑡 , is hard to obtain since unknown information about 𝒗

Weakness: 

• Different buyers may have varying attitudes even towards the same type of VM

• Static scheme ignores the value of past observations.

• The determined price is less likely to maximize the total reward

Motivation: 

• The platform aims to determine a “policy” to associate its decisions on price 𝑝𝑖,𝑗
𝑡  

              using past observations ((𝑝1, 𝑐1),(𝑝2, 𝑐2),…,(𝑝𝑡−1, 𝑐𝑡−1))
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Goal: design online posted pricing scheme that allows the platform to make online decisions 

with performance guarantees.

- Dynamic protocol: 

1. The platform must determine the price of each VM according to metric

2. Each buyer 𝑡 arrives the platform one by one and compares its price for each VM with her valuation

• If 𝑝𝑖,𝑗
𝑡 < 𝑣𝑖,𝑗

𝑡 , buyer (t) will purchase one unit of the VM, otherwise, reject;

3. Update the cumulative reward and resource consumption 𝑐𝑡 only if making a sale;

- Solution: cast this dynamic edge resource pricing as a Multi-armed bandit problem
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• 𝒑𝒊,𝒋
𝒕  ∈ 𝑝𝑖,𝑗

𝑡,1, 𝑝𝑖,𝑗
𝑡,2, 𝑝𝑖,𝑗

𝑡,3, … … , 𝑝𝑖,𝑗
𝑡,𝑉

: finite action space for the price, where 𝑣 represents the different price options/levels

• 𝒓𝒕 ∈ [0,1]: in round t/when buyer t arrives. 
𝒓𝒕 = ෍

𝑖

𝑀

෍

𝑗

𝑁

𝑝𝑖,𝑗
𝑡  𝑐𝑖,𝑗

𝑡

1 2 3 t T

𝒓𝟏(𝟑)

𝒓𝟐(𝟒)

𝒓𝟑(𝟓) 𝒓𝒕(𝟏𝟎)

𝒓𝑻(𝟖)

……

Cumulative reward 

• Goal: maximize the expected cumulative reward

• Question: which arm to select in each round ?

• Challenge: exploitation vs. exploration?
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• Reward maximization                  Regret minimization

                  

• Lower bound: 𝑅𝑒𝑔𝑇 =  Ω(𝑙𝑜𝑔𝑇) [Lai & Robbins ‘85]

max E 𝑟𝑡(𝑝, 𝜇 ) min ෍

𝑡

𝑇

E 𝑟𝑡(𝑝∗, 𝜇  − E [෍

𝑡

𝑇

𝑟𝑡(𝑝, 𝜇)]

Regret: 𝑅𝑒𝑔𝑇



Regret Optimal Algorithm

12

• Reward maximization                  Regret minimization

                  

• Lower bound: 𝑅𝑒𝑔𝑇 =  Ω(𝑙𝑜𝑔𝑇) [Lai & Robbins ‘85]

• Regret optimal algorithms (𝑅𝑒𝑔𝑇 =  Θ (𝑙𝑜𝑔𝑇) )

➢ Upper-Confidence-Bound (UCB) [Lai & Robbins ‘85, Auer et al. ‘02]

➢ Epsilon greedy [Lai & Robbins ‘85, Sutton & Barto ‘98]

➢ Thompson sampling [Thompson ‘33, Agrawal & Goyal ‘12]

max E 𝑟𝑡(𝑝, 𝜇 ) min ෍

𝑡

𝑇

E 𝑟𝑡(𝑝∗, 𝜇  − E [෍

𝑡

𝑇

𝑟𝑡(𝑝, 𝜇)]

Regret: 𝑅𝑒𝑔𝑇
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• 𝑛𝑡 𝑝 : number of times price vector 𝑝 is selected up to round 𝑡

• Ƹ𝑟𝑡 𝑝 : empirical (mean) reward of price vector p at round 𝑡 (vs. 𝑟(𝑝) true (mean) reward )

UCB Algorithm: In round 𝑡, pull the arm that maximizes the following

• UCB index

• Why UCB works? 

• Chernoff – Hoeffding inequality states: p 𝑟𝑝  −  Ƹ𝑟𝑝 < 𝜖 < 𝑒−2𝑛𝑡𝜖2

                  

    p 𝑟𝑝 > Ƹ𝑟𝑝 +
2 log 𝑡

𝑛𝑡 𝑝
< 1 −

1

𝑡4

Ƹ𝑟𝑡(𝑝) + 
2 log 𝑡

𝑛𝑡 𝑝



Contributions
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• Modeling: 

1. Online detail-free posted pricing mechanism for multi-VM problem. (vs. single item)

2. Consider computing power of VM and their geographical locations. (consider price as price )

• Algorithm:

1. Derive 

2. Eliminate the need for prior knowledge of the demand distribution (distribution-free)

3. Ensure truthfulness as the online posted price is independent of the newly arrived buyer’s valuation

• Simulations:

1. Performance comparison over three different scenarios 

2. Run-time analysis and comparison 
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Weakness: 

• The UCB algorithm can perform suboptimally when r.v is not sub-Guassian

KL-UCB

• The algorithm selects the available price vector 𝒑 with the highest 𝐔𝐂𝐁𝐩,𝐭
𝐊𝐋

𝐔𝐂𝐁𝐩,𝐭
𝐊𝐋 = max 𝑞 ∈ 0,1 : 𝑑 Ƹ𝑟𝑡 𝑝 , 𝑞  𝑛𝑡 𝑝 ≤ 𝑓(𝑡)  
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• The UCB algorithm can perform suboptimally when r.v is not sub-Guassian

KL-UCB

• The algorithm selects the available price vector 𝒑 with the highest 𝐔𝐂𝐁𝐩,𝐭
𝐊𝐋

𝐔𝐂𝐁𝐩,𝐭
𝐊𝐋 = max 𝑞 ∈ 0,1 : 𝑑 Ƹ𝑟𝑡 𝑝 , 𝑞  𝑛𝑡 𝑝 ≤ 𝑓(𝑡)  

𝑑 Ƹ𝑟𝑡 𝑝 , 𝑞 : KL divergence between two probability distributions

▪ Bernoulli distributions with parameters (𝑢, 𝑣) 

 𝑑 𝑢, 𝑣 = 𝑢 𝑙𝑜𝑔
𝑢

𝑣
+ 1 − 𝑢 𝑙𝑜𝑔

1−𝑢

1−𝑣

• Exponential distribution: with parameters (𝑢, 𝑣) 

•  𝑑 𝑢, 𝑣 =
𝑢

𝑣
− 1 − log(

𝑢

𝑣
)
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Weakness: 

• The UCB algorithm can perform suboptimally when r.v is not sub-Guassian

KL-UCB

• The algorithm selects the available price vector 𝒑 with the highest 𝐔𝐂𝐁𝐩,𝐭
𝐊𝐋

𝐔𝐂𝐁𝐩,𝐭
𝐊𝐋 = max 𝑞 ∈ 0,1 : 𝑑 Ƹ𝑟𝑡 𝑝 , 𝑞  𝑛𝑡 𝑝 ≤ 𝑓(𝑡)  

Observe the consumption vector 𝑐𝑡 and reward 𝑟𝑡
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MOSS

• The algorithm selects the available price vector 𝒑 with the highest 𝐔𝐂𝐁𝐩,𝐭
𝐌𝐎𝐒𝐒

𝐔𝐂𝐁𝐩,𝐭
𝐌𝐎𝐒𝐒 = Ƹ𝑟𝑡(𝑝) + 

max{log
𝑇

𝐾𝑛𝑡 𝑝
, 0}

𝑛𝑡 𝑝
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MOSS

• The algorithm selects the available price vector 𝒑 with the highest 𝐔𝐂𝐁𝐩,𝐭
𝐌𝐎𝐒𝐒

𝐔𝐂𝐁𝐩,𝐭
𝐌𝐎𝐒𝐒 = Ƹ𝑟𝑡(𝑝) + 

log
𝑇

𝐾𝑛𝑡 𝑝

𝑛𝑡 𝑝

• For the others, their index is an UCB on their mean reward.

𝐔𝐂𝐁𝐩,𝐭
𝐌𝐎𝐒𝐒 = Ƹ𝑟𝑡(𝑝)

• The index of an arm that has been drawn more than 
𝑛

𝐾
 times is 

simply the empirical mean of the reward; 
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MOSS

• The algorithm selects the available price vector 𝒑 with the highest 𝐔𝐂𝐁𝐩,𝐭
𝐌𝐎𝐒𝐒
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𝐌𝐎𝐒𝐒 = Ƹ𝑟𝑡(𝑝) + 

max{log
𝑇

𝐾𝑛𝑡 𝑝
, 0}

𝑛𝑡 𝑝

Observe the consumption vector 𝑐𝑡  and reward 𝑟𝑡
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Simulation setup:

• T = 100000 buyers

• M = 3 types of VM 

• N = 3 edge nodes (ENs)

• K = 20 pricing options (possible price vector)

• Three different scenarios to simulate buyer’s valuation (𝒗𝒕) :

✓ Uniform distribution: U[0,1]

✓ Gaussian: with mean 𝜇 = 0.2 and var 𝜎 = 0.2

✓ Exponential: with mean 𝜇 =
1

𝜆
= 0.2 

• Three baseline benchmarks
➢ Upper-Confidence-Bound (UCB) [Lai & Robbins ‘85, Auer et al. ‘02]

➢ Epsilon greedy [Lai & Robbins ‘85, Sutton & Barto ‘98]

➢ Thompson sampling [Thompson ‘33, Agrawal & Goyal ‘12]

• Performance metrices
➢ Cumulative reward (higher - better)

➢ Cumulative sum of obtained reward from each round 

➢ Cumulative regret (lower - better)

➢ The reward difference between optimal arm and selected arm.
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Gaussian: with mean 𝜇 = 0.2 and var 𝜎 = 0.2
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Gaussian: with mean 𝜇 = 0.2 and var 𝜎 = 0.2

• TS achieve highest cumulative reward and lowest cumulative regret

• KL-UCB and MOSS also perform well compared to TS

• KL-UCB and TS enjoy flatter and lower cumulative regret compared to other schemes
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Uniform distribution: U[0,1]

• TS achieve highest cumulative reward and lowest cumulative regret

• KL-UCB enjoy faster convergence rate of the cumulative regret
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Exponential: with mean 𝜇= 1/𝜆 =0.2 

• KLUCB and MOSS achieves best performance 

compared to other algorithms with the exponential 

scenario

Optimal arm Suboptimal arm

• Higher doesn’t always mean better

• TS suggests a suboptimal arm which lead to a larger 

cumulative regret

• MOSS picked the optimal price vector more often than 

KLUCB
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Summary

• The proposed KL-UCB and MOSS based pricing scheme perform well over all scenarios in terms of 

cumulative regret and cumulative reward.

• TS performs optimally when dealing with uniform and Gaussian distribution but perform poorly on 

exponential distributions
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Run-time results/setup

Number of arms (K) 100 200 300 400 500

UCB (sec) 2.76 3.75 5.04 7.62 12.76

EG (sec) 2.51 4.35 6.36 9.77 19.12

TS (sec) 25.93 49.87 74.21 97.28 120.38

KL-UCB (sec) 20.11 40.31 59.89 82.49 101.57

MOSS (sec) 3.11 4.33 6.94 7.84 12.72

• Run-time = Total execution time for total 100,000 buyers

• Take average run-time over 500 instances

• K = [100,500]

1: All the experiments are implemented in MATLAB on a desktop with an Intel Core i7-11700KF CPU and 16BG RAM
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Run-time analysis

1: All the experiments are implemented in MATLAB on a desktop with an Intel Core i7-11700KF CPU and 16BG RAM

Number of arms (K) 100 200 300 400 500

UCB (sec) 2.76 3.75 5.04 7.62 12.76

EG (sec) 2.51 4.35 6.36 9.77 19.12

TS (sec) 25.93 49.87 74.21 97.28 120.38

KL-UCB (sec) 20.11 40.31 59.89 82.49 101.57

MOSS (sec) 3.11 4.33 6.94 7.84 12.72

More time

• Larger price option space consumes more time
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Run-time comparison

Number of arms (K) 100 200 300 400 500

UCB (sec) 2.76 3.75 5.04 7.62 12.76

EG (sec) 2.51 4.35 6.36 9.77 19.12

TS (sec) 25.93 49.87 74.21 97.28 120.38

KL-UCB (sec) 20.11 40.31 59.89 82.49 101.57

MOSS (sec) 3.11 4.33 6.94 7.84 12.72

1. MOSS proves to be more computationally efficient 

❑ MOSS improves the performance of original UCB  but still keep the original 

index-based format. 
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Run-time comparisons

Number of arms (K) 100 200 300 400 500

UCB (sec) 2.76 3.75 5.04 7.62 12.76

EG (sec) 2.51 4.35 6.36 9.77 19.12

TS (sec) 25.93 49.87 74.21 97.28 120.38

KL-UCB (sec) 20.11 40.31 59.89 82.49 101.57

MOSS (sec) 3.11 4.33 6.94 7.84 12.72

1. MOSS proves to be more computationally efficient 

❑ MOSS improves the performance of original UCB  but still keep the original 

index-based format. 

2. KL-UCB incurs a higher computational cost

❑ This process involves solving an optimization problem and computing the KL 

divergence between the estimated and prior distributions
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Summary

• Incurs a higher computational cost when number of arms become larger 

• Distribution-free 

• Enjoy a lower and faster convergence rate of the cumulative regret 

compared to MOSS

KL-UCB

MOSS
• Achieve the best distribution-free regret of 𝑇𝐾 for stochastic bandits

• Provide a unique UCB estimate based on the empirical mean reward

• Computationally efficient 

• Higher cumulative regret/ slower convergence rate of regret
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✓ Cast the dynamic pricing for VM problem into an MAB problem

✓ Presented two novel online posted pricing mechanisms for allocating heterogeneous edge resources 

❑ Without prior knowledge of demand distribution 

✓ Simulations

❑ Good performance in both cumulative reward and cumulative regret

❑ Time complexity analysis when size of arms is large



Conclusion
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UCB algorithm

13

• 𝑛𝑡 𝑝 : number of times price vector 𝑝 is selected up to round 𝑡

• Ƹ𝑟𝑡(𝑝): empirical (mean) reward of price vector p at round 𝑡 

• 𝑅𝑡: denotes the accumulative sum of  reward up to time 𝑡

                  

Ƹ𝑟𝑡 𝑝  =
𝑅𝑡

𝑛𝑡 𝑝
=

σ𝜏=1
𝑡 𝑟𝜏(𝑝)

𝑛𝑡 𝑝



UCB algorithm

13

• 𝑛𝑡 𝑝 : number of times price vector 𝑝 is selected up to round 𝑡

• Ƹ𝑟𝑡(𝑝): empirical mean of reward for arm 𝑝 at time 𝑡 (vs. 𝑟𝑡(𝑝) true mean)

                  

𝑟𝑡(𝑝) Ƹ𝑟𝑡(𝑝) 

Upper Confidence Bound



Problem formulation

11

• 𝒑𝒊,𝒋
𝒕  ∈ 𝑝𝑖,𝑗

𝑡,1, 𝑝𝑖,𝑗
𝑡,2, 𝑝𝑖,𝑗

𝑡,3, … … , 𝑝𝑖,𝑗
𝑡,𝑉

: finite action space for the price, where 𝑣 represents the different price options/levels

• 𝒓𝒕 ∈ [0,1]: in round t/when buyer t arrives. 

𝑝𝑖,𝑗
𝑡,1 < 𝑝𝑖,𝑗

𝑡,2 < 𝑝𝑖,𝑗
𝑡,3 <  … < 𝑝𝑖,𝑗

𝑡,𝑉

𝒓𝒕 = ෍

𝑖

𝑀

෍

𝑗

𝑁

𝑝𝑖,𝑗
𝑡  𝑐𝑖,𝑗

𝑡

1 2 3 t T

𝒓𝟏(𝟑)
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• 𝒑𝒊,𝒋
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……
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• 𝒑𝒊,𝒋
𝒕  ∈ 𝑝𝑖,𝑗
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𝑡,3, … … , 𝑝𝑖,𝑗
𝑡,𝑉

: finite action space for the price, where 𝑣 represents the different price options/levels
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𝑗

𝑁
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𝑡

1 2 3 t T

𝒓𝟏(𝟑)

𝒓𝟐(𝟒)

𝒓𝟑(𝟓) 𝒓𝒕(𝟏𝟎)

𝒓𝑻(𝟖)

……



Dynamic pricing scheme

9

𝝀𝒑: fractional relaxation for the number of buyers by which a given price 𝑝 is accepted.

We can write this dynamic pricing problem in the form of the linear programming problem, denoted by LP



Dynamic pricing scheme

9

𝝀𝒑: fractional relaxation for the number of buyers by which a given price 𝑝 is accepted.

We can write this dynamic pricing problem in the form of the linear programming problem, denoted by LP

max
𝜆

𝜆𝑝 𝑟(𝑝, 𝜇)

𝑠. 𝑡. ෍

𝑝 ∈𝑃

𝜆𝑝 𝑐𝑖,𝑗 𝑝, 𝜇 ≤ 𝐶𝑖,𝑗 , ∀ 𝑖, 𝑗 

𝜆𝑝 ≥ 0, ∀ p

෍

𝑝 ∈𝑃

𝑐𝑖,𝑗 𝑝, 𝜇 ≤ 𝑇



Dynamic pricing scheme

4

𝝀𝒑: fractional relaxation for the number of buyers by which a given price 𝑝 is accepted.

We can write this dynamic pricing problem in the form of the linear programming problem, denoted by LP

max
𝜆

𝜆𝑝 𝑟(𝑝, 𝜇)

𝑠. 𝑡. ෍

𝑝 ∈𝑃

𝜆𝑝 𝑐𝑖,𝑗 𝑝, 𝜇 ≤ 𝐶𝑖,𝑗 , ∀ 𝑖, 𝑗 

𝜆𝑝 ≥ 0, ∀ p

෍

𝑝 ∈𝑃

𝑐𝑖,𝑗 𝑝, 𝜇 ≤ 𝑇

Resource capacity constraint for each type VM 



Dynamic pricing scheme

9

𝝀𝒑: fractional relaxation for the number of buyers by which a given price 𝑝 is accepted.

We can write this dynamic pricing problem in the form of the linear programming problem, denoted by LP

max
𝜆

𝜆𝑝 𝑟(𝑝, 𝜇)

𝑠. 𝑡. ෍

𝑝 ∈𝑃

𝜆𝑝 𝑐𝑖,𝑗 𝑝, 𝜇 ≤ 𝐶𝑖,𝑗 , ∀ 𝑖, 𝑗 

𝜆𝑝 ≥ 0, ∀ p

෍

𝑝 ∈𝑃

𝑐𝑖,𝑗 𝑝, 𝜇 ≤ 𝑇
Time runs out/ no more buyers 
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max
𝜆

𝜆𝑝 𝑟(𝑝, 𝜇)

𝑠. 𝑡. ෍

𝑝 ∈𝑃

 𝑐𝑖,𝑗 𝑝, 𝜇 ≤ 𝑇 , ∀ 𝑖, 𝑗 

𝜆𝑝 ≥ 0, ∀ p

Unlimited case (𝑇 ≪ 𝐶𝑖,𝑗) => reduce the problem into the following LP

Resource capacity constraint (𝐶𝑖,𝑗) is limited in practice.  

For simplicity, we consider unlimited case where 𝑇 ≪ 𝐶𝑖,𝑗
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