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Overview of edge computing (EC) system

e EC platform: manages a set of heterogeneous edge resources (e.g.,
Edge nodes = ENs).

e User: requests are aggregated by nearby access points (e.g., Wi-Fi
routers, base stations)
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Figure: overview of edge computing (EC) system
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Figure: overview of edge computing (EC) system

@ Operations: service placement, workload allocation, pricing

@ Planning: network design, edge node placement

@ Uncertainties: extreme weather conditions, component failures,

fluctuating resource demand, user mobility, ...
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Introduction

Focus of today’s paper

This work investigates edge node placement and resource allocation
problem

The EC platform (e.g., Equinix) may decide:

@ EN placement decisions: install ENs from a set of potential
candidate locations.

@ Resource allocation decisions: equip an appropriate amount of
edge resources, given the diverse range of loT services with varying
requirements.

@ Uncertain demand
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Introduction

Toy example
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Figure: Toy example

We consider an EC system that consists of
e 5 candidate EN locations, one in each area (city metropolitan level)

@ Uncertain demand: Users' demand in each area
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Introduction

Toy example
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Figure: Toy example

o EN placement: place EN 3 and EN 5
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Introduction

Toy example

EC Platform
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Figure: Toy example

Resource allocation decisions
@ Workload from area 1, 2, 4 is allocated to EN 3; Workload from area
5 is allocated to EN 5.

@ Portion of workload from area 3 is served by EN 3 and the rest of
workload is served by EN 5.

= = = = = et
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Challenges

Uncertainty

Managing uncertainties is a key factor in achieving consistent performance,
and superior user experience in EC.
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Challenges

Uncertainty
Managing uncertainties is a key factor in achieving consistent performance,
and superior user experience in EC.

Many efforts within the realm of optimization under uncertainty have been
developed for EC:

@ Stochastic optimization (SO): assume complete knowledge of the
underlying uncertainty distribution (true distribution); require a large
number of samples.
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Challenges

Uncertainty

Managing uncertainties is a key factor in achieving consistent performance,
and superior user experience in EC.

Many efforts within the realm of optimization under uncertainty have been
developed for EC:
@ Stochastic optimization (SO): assume complete knowledge of the
underlying uncertainty distribution (true distribution); require a large
number of samples.

@ Robust optimization (RO): use a parametric set to represent
uncertain parameters; robust solution can be overly conservative
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Related work

Our approach

Distributionally robust optimization (DRO) optimizes decisions w.r.t
worst-case distribution within a predefined ambiguity set.

@ Moment-based ambiguity set: [Ye, 2010]
@ Wasserstein-metric ambiguity set: [Kuhn, 2018]
e x-divergence ambiguity set: [Yu, 2024]

Related work: resource management under

e Demand uncertainty: [Liang et al. 2018], [Zhang et al. 2020],
[Chen et al. 2021], [Li et al. 2022].

e Delay uncertainty: [Cui et al. 2023]
@ Others: renewable energy [Zhou et al. 2021], risk [Li, et al. 2023]
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Introduction

Motivation: endogeneity

Interdependence between decisions and uncertainty

Some random factors are substantially affected by the choice of decision,
therefore referred to as decision-dependency or endogeneity. For

example,

@ Production decisions serve as not only an instruction to produce but
also an investment to refine the information on the production cost.

@ System reliability or failure rate change with respect to maintenance

decision.
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Introduction

Motivation: endogeneity
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Figure: System model

@ Increased mean of demand: The presence of more ENSs, along with
increased resource availability and reduced network delay, improving
user confidence.
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Introduction

Motivation: endogeneity
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Figure: System model

@ Increased mean of demand: The presence of more ENSs, along with
increased resource availability and reduced network delay, improving
user confidence.

o Decreased demand variance: As more users become more confident
in the reliability and availability of edge resources, their demand
patterns tend to become more consistent and predictable.
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Introduction

Motivation

Research question:

@ How to quantitatively capture this endogeneity between uncertainties
and decisions?

@ What are the benefits of capturing this interdependency?
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Introduction

Contribution

Our contributions can be summarized in three folds:

@ Modeling: propose a novel two-stage DRO framework with a
decision-dependent moment-based ambiguity set for optimal EN
placement.
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Contribution

Our contributions can be summarized in three folds:

@ Modeling: propose a novel two-stage DRO framework with a
decision-dependent moment-based ambiguity set for optimal EN
placement.

@ Techniques:

o (i) develop an efficient and exact reformulation to convert the
two-stage problem into a mixed integer linear programming

o (ii) introduce an improved algorithm that generates feasibility cuts to
speed up the computation.
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Contribution

Our contributions can be summarized in three folds:

@ Modeling: propose a novel two-stage DRO framework with a
decision-dependent moment-based ambiguity set for optimal EN
placement.

@ Techniques:

o (i) develop an efficient and exact reformulation to convert the
two-stage problem into a mixed integer linear programming

o (ii) introduce an improved algorithm that generates feasibility cuts to
speed up the computation.

@ Numerical results: demonstrate the efficiency of the proposed model
compared to the state of art.
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System model

System model

Ai: Resource demand (uncertain) in area 4
y; € {0,1}: EN placement decision for an EN at location j

x; j: workload generated in area ¢ allocated to EN j

s;: unmet workload at each area ¢
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System model

Uncertainty modeling

We mainly focus on the moment-based ambiguity set, where only the
mean and variance of the demand distribution are provided.

@ The true distribution of demand originates from a set of possible
distributions, where demand \; can take any value from a finite
support set = = {&1,&2,...,&n} with unknown probabilities
(Pi1sPi2s -+ DiN)
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System model

Uncertainty modeling

(1) Exogenous stochastic demand: when the demand is independent of
the EN placement decision.

N
Uy = {{p}iel : p; € RY, sz',n =1, Vi, (1a)
sz nén — fii| < TY, Vi, (1b)
n=1
N
RO e W CRu e AT S
n=1

@ (1a): probability across all areas within the support set sum up to 1
o (1b): the true mean of demand lies within an L1-distance I'}" from
the empirical mean [;
@ (1c): the actual second moment of demand must fall within the
interval [(67 + fi7)L7, (67 + fif )T
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System model

Uncertainty modeling

(2) Endogenous stochastic demand: when the demand is dependent of
the EN placement decision.

N

Us(y) = {{pz-}iez: peRY, Ypia=1, Vi (2a)
n=1

|mesn piy)l < T, Vi, (2b)

07 (1) + (ni(y))?]L7 < Z Pina < [07 (y)+(pily))?]T7 Vi } (2c)

n=1

Remark

1i(y) and o2(y) are the mean/variance of the demand, defined as a
function of EN placement decisions y

i = — = — S Nel
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System model

Uncertainty set comparison

Endogenous stochastic demand

1i(y) = I <1 +> ‘Iféijj> , (3a)

JjedJ

o7 (y) = max {03 <1 - ‘I’Z;,'yj> : (053)2}- (3b)

jeJ

@ Closer locations may have higher impacts on demand’s first and
second moments, while areas farther away have less effect.

® when W7, = \I/fj =0, Vi, 7, the ambiguity set reduces to exogenous
ambiguity set.

@ In the simulation, for simplicity, we consider decreasing functions of
the network delay (e.g., distance), i.e., exp(—d’gj).
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System model

Problem formulation

The proposed two-stage decision-dependent DRO problem of the EC
platform for EN placement and resource allocation is:

yer{%l?}JZ Y+ max mlnE [ ng:rm —I—Zsluz] (4)

pEU(yY

(i) (i2)

@ (i): total EN placement cost (planning cost).
o (ii): network delay penalty & unmet demand.

@ This problem is a tri-level optimization problem (“min-max-min").
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System model

Problem formulation

st. Q(y) = { Z fiy; < B; Zyj > Kmin} (4a)

JjeJ JjeT
u; + in,j = )\Z(y), Vi (4C)
J

Zdi,ﬂi,j < Aii(y), W}. (4d)

J

e Q;(y): includes the budget and reliability constraints

@ (Q9(A,y): includes the capacity; supply-demand; delay constraints

@ The demand (i.e., A(y)) is a function of the first-stage decision in the
planning stage.
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Solution approach

Exact monolithic reformulation: Exact OPT-Placement

Core ideas of the algorithm:

Step 1: Solve the inner Step 2: Dualize the obtained Step 3: Linearize the bilinear
problem: Find analytical inner “max-max" problem, and tri-linear terms based on
solution for the dual problem subject to all constraints McCormick linearization

of innermost problem within U, (y) techniques

Figure: Flow chart of Exact OPT-Placement
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Solution approach

Exact monolithic reformulation: Exact OPT-Placement

Step 1: Decompose each inner problem based on each area i:

g(y7 >‘) = Ziez gi(yv )\),i.e.,
gi(y, \) = T}{llglpz d;i i + siu;
j

st. xi; < Cijyj, Vi (vi,j)

u; + szg = Ai(y), (o)
J

D digrig < Aidily),  (B)

J
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Solution approach

Exact monolithic reformulation: Exact OPT-Placement

The dual problem of g;(y,\), for area i € Z is:

e Y Cunet s SO (69
st. v +a;+ Bidij < pd;j, Vi (5b)
a; < s, B <05 v <0, V5 (5¢)

Goal
@ ldentify the closed-form expression for the optimal objective value
of the dual problem in each area, considering the extreme points and

rays of the feasible region.
@ The second-stage problem converts from (“max-min”) to
("max-max”).
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Solution approach

Exact monolithic reformulation: Exact OPT-Placement

Step 2: Dualize the obtained inner “min-max” problem subject to
all constraints within U>(y). (¢;,,(y) is obtained from Step 1)

N
max Z Zpi,n9i7n(y) (6a)
Pim o7 nm1

N
st Y pinén=1, Y () (6b)
n=1
N
T — pi(y) < pimén < T8 + paly), Vi (67,6}) (6¢)
n=1
N —
(02 + (0 )7 < S pn? < (02 + (o)) 7. i G220
n=1
(6d)
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Solution approach

Exact monolithic reformulation: Exact OPT-Placement

Step 2: Dualize the obtained inner “min-max” problem subject to

all constraints within U>(y). (¢;,,(y) is obtained from Step 1)
min Y w40 (a(y) + T8 = 07 (mi(y) = TY)

+ (o7 () + ((i)H)TT = (07 (y) + (ui(y)*)IY
st wi+ (6, —6)en + (vi =& = Oinl(y), Vi,n
5},5?,7},%2 >0, Vi.
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(6a)
(6b)

(6¢)

18/30



Solution approach

Exact monolithic reformulation: Exact OPT-Placement

Step 2: Dualize the obtained inner “min-max” problem subject to

all constraints within U>(y). (¢;,,(y) is obtained from Step 1)  After
step 2,

e P1 (“min-max-min") was reduced to a single-stage minimization
problem.

@ However, it is still a single-stage mixed integer non-linear
programming problem (MINLP).
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Solution approach

Exact monolithic reformulation: Exact OPT-Placement

Step 3: Linearize the bilinear and trilinear terms by McCormick
linearization.

e ui(y) and o?(y) are affine function of the placement decision y.

@ Bilinear terms involve the product of binary variables and a
non-negative continuous variable (k" = ~"y).

@ To linearized the bilinear term, M, , , denotes the set involving the
McCormick inequalities for linearizing any bilinear term, where
y € {0,1}, and 7" is non-negative.

Moy = {(Fc,%y) Y Y<K <Ay <y <A

y
Y= (l=y) <K<y - (1 —yhr}, (6)

Jiaming Cheng INFOCOM 24 February 7, 2025 19 /30



Solution approach

Improved variants

According to Algorithm 1, this computation time of solving this
large-scale MILP can be sensitive to the network size.
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Solution approach

Improved variants

Core idea:

@ The problem after Step 2 is feasible within a region satisfying
associated inequalities:

+ (80 =0 &+ (v =) = Oinly), Vion  (7a)
01,6777 = 0, Vi (7b)

@ J; and ~y; are unbounded: identifying the extreme points to achieve
the optimal objective might be time-consuming.

@ The goal is to find a set of extreme rays (w;, 51-1, 6?, %-1, %2) that can
represent the feasible region defined by (7)
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Solution approach

Improved variants

@ To identify the extreme rays, we will solve the following inequality
systems for k,1 € {1,2,...N}.

wi + 8:&, + i€ =0, Vi, k (8a)
wi + 0:& + 7, =0, Vi, (8b)
wi + 6i&n + 762 >0, Yn € {1,2,...,N}\ {I,k}. (8¢)
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Solution approach

Improved variants

@ To identify the extreme rays, we will solve the following inequality
systems for k,1 € {1,2,...N}.

wi + 8:&, + i€ =0, Vi, k (8a)
w; + 8:& + ;& =0, Vi, 1 (8b)
wi+ 0in + 760 >0, Vo€ {1,2,... . N}\{l,k}.  (8c)

e W.lo.g, we assume that & < &. Define {{(1),{2),---,§n)} as a
ordered support for the random demand.

@ Goal: determine the relationship between &, &, and the other
instances &,,n € {1,2,..., N} \ {k,1}.
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Numerical results

Performance comparison

In this section, we compare the performance of the proposed DRO-DDU
with the following benchmarks:

@ HEU: Choose a subset of ENs according to demand, giving priority to
areas with higher demand until the available budget is fully utilized.

BSPA: Deploy as many ENs as possible within the budget.
DET: Deterministic EN placement problem.
SO: Two-stage SO with uniform in-sample distribution.

DRO-DIU: \Pﬁj:\llgj:(). The original problem reduces to a
two-stage DRO with exogenous stochastic demand.

Jiaming Cheng INFOCOM 24 February 7, 2025 22/30



Numerical results

Performance analysis

Impacts of the EN placement cost

2000 3000
—<DRO-DDU
_ _ -=-DRO-DIU
8 1500 2 le}
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S 1000 S —+HEU
= =
a = BSPA
2 2 1000
£ 500 2
0 0
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h h

Figure: h;: Scaling factor for EN placement cost

o Stability: DRO-based models show increased stability compared to
other schemes, especially with higher h;.

INFOCOM 24 B



Numerical results

Performance analysis
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Figure: Ratio of variation at each area: ; = %,Vi

@ Robustness: as 6 increases, the gap between these schemes widens
due to the significant deviation of actual demand from its mean.
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Sensitivity analysis

Choice of decision-dependency:
e Uni: uniform impact overall areas (¥, ; = 1);
@ No: No impact: reduce the problem to the traditional DRO problem
with a decision-independent ambiguity set;

@ Max: Maximum impact on the closest area only (min; d; ;).

@ Decrease:decreasing function of the network delay exp(—d;)’j ).

2000 800
Ot e
- -
15008 “Dﬂii'ease 700 B-140 4-B-200 . . |
~v-No 600 M—X’

Actual Total Cost
E

Actual Total Cost
=
o
o

[¢] 300 — '
60 80 100 120 140 160 180 200 20 40 60 80 100 120 140 160 180 200
B b

Figure: Choice of decision-dependency: b: decaying factor
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Numerical results

Network size | Standard | Improved
|=10; J=10| 31.31s 21.68s
| =20; J=10 | 66.88s 62.95s
| =20;J=20| 404.11s 331.79s
| =30; J=20| 1314.8s 901.8s
| =40; J=20| 3357.2s 2178.28s

Table: Runtime comparison
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Conclusion

Conclusions

@ Who will benefit from this framework?
o Edge infrastructure provider (e.g., Equinix, AT&T): long-term
planning, data center capacity expansion
e They can proactively control uncertainties and obtain a more accurate
representation of uncertainty through the lens of Endogeneity.
@ The ambiguity set in DRO framework can be based on different
metrics. This endogeneity can be also considered in those metrics.
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Conclusion

Exact monolithic reformulation: Exact OPT-Placement

Case 1: o; = s;
o v;j < pd;jo; + Bid; j. As v; j <0, the extreme point of v; ; can
occur at
] (I) Ui,j = 0
o (ii) vij = pdijo + Bidy j if pdsj — s; — Bidsj <0
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Conclusion

Exact monolithic reformulation: Exact OPT-Placement

Case 1: o; = s;

o v;j < pd;ja; + Bid; j. As v; j <0, the extreme point of v; ; can
occur at
(I) Vi = 0

° p— dsi"'j < B; <0, then v; ; < pd; j — s; < 0 due to assumption
8; > pdim v; ; < 0 becomes redundant and v; ; = pd; j_s, is the
extreme point.

e The optimal value of the objective function is

sii(y) + Z Ciyyi(pdij — si), Vi. (9)
J
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Conclusion

Exact monolithic reformulation: Exact OPT-Placement

Case 1: o; = s;

o v;j < pd;jo; + Bid; j. As v; j <0, the extreme point of v; ; can

occur at
(ii) vij = pdz’jaﬂrﬁi i if pdij — ~—/B,~dz~7j <0
° Bi < i — Si — Bid; ; > 0 holds true.
Thus, we have the v < pdi; — ﬂldw- becomes redundant and

v; ; represent the extreme pomt
o The optimal value of the objective function is

Si
s + (p - dmi">Ai

where d™" = minj ¢ 7 d; yVi, we have §; = p —

Aiy), Vi. (9)

dmm
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Conclusion

Exact monolithic reformulation: Exact OPT-Placement

Case 2: ¢; < s;
@ Similarly, v;; reaches its extreme point at either
] (I) V5 = 0
o (ii) vij = pdi; — ;i — Bids
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Conclusion

Exact monolithic reformulation: Exact OPT-Placement

Case 2: ¢; < s;j

e Similarly, v;; reaches its extreme point at either
(i) If v; ; = 0 for some j, it must hold that pd; j; — a; — Bid; ; > 0,
e, a; <d;j(p—pBi)

e we aim to find extreme points for §; such that
S; > {mﬁax(p — Bi)divj,Vj, s.t ﬁz < 0} (10)
o Notably, (p — B8;)d; ; > s; when ; = —o0,Vi. Thus, a; = pd; ; and

Bi = 0 represent the extreme points.
e The optimal value of the objective function is

sihi(y) + Y Ciyys(pdiy — si), Vi, (11)
j
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Conclusion

Exact monolithic reformulation: Exact OPT-Placement

Case 2: o < s

@ Similarly, v;; reaches its extreme point at either
(i) vij = pd; j — a; — Bid; j, it implies that the constraint
Uy, 4 < pdi,j — Oy — Bidi,j is binding, i.e.,

pdij — i — Bidi; < 0. (10)
e Since 5; <0, B; = 0 represents the extreme point that ensures above

constraints holds. Thus o; must satisfy pd; ; < o; < s; for all j
e The optimal value of the objective function is

pdi g~ Ni(y) + Z Cijp(dij — dij=)yj, Vi (11)
Jidi,j<dj j*
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Conclusion

Exact monolithic reformulation: Exact OPT-Placement

Case 2: o5 < s

Si Pd@j*
df_nln dmlﬂ
1 1

@ For a given j*, we have a closed form expression:
pdi = Xi(Y) + 25, <, ;. CiiyiP(dig — dij)

pdi = Ni(y) + [(p— . i )Az} Ai(y)-

@ since s; > pd; j+ and p —

<p-—
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Conclusion

Exact monolithic reformulation: Exact OPT-Placement

Case 2: o5 < s

Si Pdi,_j*
df_nln dmlﬂ
1 1

@ For a given j*, we have a closed form expression:
pdij Ni(Y) + 254, i <a, . Cigyip(diy — dije)

pdi = Ni(y) + [(p— . i )Az} Ai(y)-

@ since s; > pd; j+ and p — <p-

@ For each area i, the optimal inner problem g;(y, \) corresponding to
the actual realization &, with probability p; , can be written as

pd; j+
Qin — dz i*Qn - - AL 9
() max. p RS +maX{[f) d?.n) I3

> Cigpldiy - di,j*)yj}a Vi, n. (12)

jidi,j<di7j*
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Conclusion

Exact monolithic reformulation: Exact OPT-Placement

Intuitive ideas of step 1
The inner obj determines which one of these negative terms imposes a
more stringent requirement, either in terms of the capacity constraint or

the delay constraint.

The whole problem now becomes the “min-max” problem.
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