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Introduction

Overview of edge computing (EC) system

EC platform: manages a set of heterogeneous edge resources (e.g.,
Edge nodes = ENs).

User: requests are aggregated by nearby access points (e.g., Wi-Fi
routers, base stations)

Figure: overview of edge computing (EC) system
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Introduction

Overview of edge computing (EC) system

Figure: overview of edge computing (EC) system

Operations: service placement, workload allocation, pricing

Planning: network design, edge node placement

Uncertainties: extreme weather conditions, component failures,
fluctuating resource demand, user mobility, ...
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Introduction

Focus of today’s paper

This work investigates edge node placement and resource allocation
problem

The EC platform (e.g., Equinix) may decide:

EN placement decisions: install ENs from a set of potential
candidate locations.

Resource allocation decisions: equip an appropriate amount of
edge resources, given the diverse range of IoT services with varying
requirements.

Uncertain demand
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Introduction

Toy example

Figure: Toy example

We consider an EC system that consists of

5 candidate EN locations, one in each area (city metropolitan level)

Uncertain demand: Users’ demand in each area
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Introduction

Toy example

Figure: Toy example

EN placement: place EN 3 and EN 5
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Introduction

Toy example

Figure: Toy example

Resource allocation decisions

Workload from area 1, 2, 4 is allocated to EN 3; Workload from area
5 is allocated to EN 5.

Portion of workload from area 3 is served by EN 3 and the rest of
workload is served by EN 5.
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Introduction

Challenges

Uncertainty

Managing uncertainties is a key factor in achieving consistent performance,
and superior user experience in EC.

Many efforts within the realm of optimization under uncertainty have been
developed for EC:

Stochastic optimization (SO): assume complete knowledge of the
underlying uncertainty distribution (true distribution); require a large
number of samples.

Robust optimization (RO): use a parametric set to represent
uncertain parameters; robust solution can be overly conservative

Jiaming Cheng INFOCOM 24 February 7, 2025 6 / 30



Introduction

Challenges

Uncertainty

Managing uncertainties is a key factor in achieving consistent performance,
and superior user experience in EC.

Many efforts within the realm of optimization under uncertainty have been
developed for EC:

Stochastic optimization (SO): assume complete knowledge of the
underlying uncertainty distribution (true distribution); require a large
number of samples.

Robust optimization (RO): use a parametric set to represent
uncertain parameters; robust solution can be overly conservative

Jiaming Cheng INFOCOM 24 February 7, 2025 6 / 30



Introduction

Challenges

Uncertainty

Managing uncertainties is a key factor in achieving consistent performance,
and superior user experience in EC.

Many efforts within the realm of optimization under uncertainty have been
developed for EC:

Stochastic optimization (SO): assume complete knowledge of the
underlying uncertainty distribution (true distribution); require a large
number of samples.

Robust optimization (RO): use a parametric set to represent
uncertain parameters; robust solution can be overly conservative

Jiaming Cheng INFOCOM 24 February 7, 2025 6 / 30



Introduction

Related work

Our approach

Distributionally robust optimization (DRO) optimizes decisions w.r.t
worst-case distribution within a predefined ambiguity set.

Moment-based ambiguity set: [Ye, 2010]

Wasserstein-metric ambiguity set: [Kuhn, 2018]

χ-divergence ambiguity set: [Yu, 2024]

Related work: resource management under

Demand uncertainty: [Liang et al. 2018], [Zhang et al. 2020],
[Chen et al. 2021], [Li et al. 2022].

Delay uncertainty: [Cui et al. 2023]

Others: renewable energy [Zhou et al. 2021], risk [Li, et al. 2023]

Jiaming Cheng INFOCOM 24 February 7, 2025 7 / 30



Introduction

Motivation: endogeneity

Interdependence between decisions and uncertainty

Some random factors are substantially affected by the choice of decision,
therefore referred to as decision-dependency or endogeneity. For
example,

Production decisions serve as not only an instruction to produce but
also an investment to refine the information on the production cost.

System reliability or failure rate change with respect to maintenance
decision.
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Introduction

Motivation: endogeneity

Figure: System model

Increased mean of demand: The presence of more ENs, along with
increased resource availability and reduced network delay, improving
user confidence.

Decreased demand variance: As more users become more confident
in the reliability and availability of edge resources, their demand
patterns tend to become more consistent and predictable.
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Introduction

Motivation

Research question:

How to quantitatively capture this endogeneity between uncertainties
and decisions?

What are the benefits of capturing this interdependency?
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Introduction

Contribution

Our contributions can be summarized in three folds:

Modeling: propose a novel two-stage DRO framework with a
decision-dependent moment-based ambiguity set for optimal EN
placement.

Techniques:
(i) develop an efficient and exact reformulation to convert the
two-stage problem into a mixed integer linear programming
(ii) introduce an improved algorithm that generates feasibility cuts to
speed up the computation.

Numerical results: demonstrate the efficiency of the proposed model
compared to the state of art.
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System model

System model

λi: Resource demand (uncertain) in area i

yj ∈ {0, 1}: EN placement decision for an EN at location j

xi,j : workload generated in area i allocated to EN j

si: unmet workload at each area i
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System model

Uncertainty modeling

We mainly focus on the moment-based ambiguity set, where only the
mean and variance of the demand distribution are provided.

The true distribution of demand originates from a set of possible
distributions, where demand λi can take any value from a finite
support set Ξ = {ξ1, ξ2, . . . , ξN} with unknown probabilities
(pi,1, pi,2, . . . , pi,N )
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System model

Uncertainty modeling

(1) Exogenous stochastic demand: when the demand is independent of
the EN placement decision.

U1 =

{
{p}i∈I : pi ∈ RN

+ ,

N∑
n=1

pi,n = 1, ∀i, (1a)

|
N∑

n=1

pi,nξn − µ̄i| ≤ Γµ
i , ∀i, (1b)

(
σ̄2
i + µ̄2

i

)
Γσ
i ≤

N∑
n=1

pi,nξ
2
n ≤

(
σ̄2
i + µ̄2

i

)
Γ̄σ
i , ∀i

}
. (1c)

(1a): probability across all areas within the support set sum up to 1

(1b): the true mean of demand lies within an L1-distance Γµ
i from

the empirical mean µ̄i

(1c): the actual second moment of demand must fall within the
interval [(σ̄2

i + µ̄2
i

)
Γσ
i , (σ̄

2
i + µ̄2

i )Γ̄
σ
i ].
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System model

Uncertainty modeling

(2) Endogenous stochastic demand: when the demand is dependent of
the EN placement decision.

U2(y) =

{
{pi}i∈I : pi ∈ RN

+ ,

N∑
n=1

pi,n = 1, ∀i, (2a)

|
N∑

n=1

pi,nξn − µi(y)| ≤ Γµ
i , ∀i, (2b)

[
σ2
i (y)+(µi(y))

2
]
Γσ
i ≤

N∑
n=1

pi,nξ
2
n≤
[
σ2
i (y)+(µi(y))

2
]
Γ̄σ
i ,∀i

}
. (2c)

Remark

µi(y) and σ2
i (y) are the mean/variance of the demand, defined as a

function of EN placement decisions y
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System model

Uncertainty set comparison

Endogenous stochastic demand

µi(y) = µ̄i

(
1 +

∑
j∈J

Ψµ
i,jyj

)
, (3a)

σ2
i (y) = max

{
σ̄2
i

(
1−

∑
j∈J

Ψσ
i,jyj

)
, (σLB

i )2

}
. (3b)

Closer locations may have higher impacts on demand’s first and
second moments, while areas farther away have less effect.

when Ψσ
i,j = Ψµ

i,j = 0, ∀i, j, the ambiguity set reduces to exogenous
ambiguity set.

In the simulation, for simplicity, we consider decreasing functions of
the network delay (e.g., distance), i.e., exp(−di,j

b ).
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System model

Problem formulation

The proposed two-stage decision-dependent DRO problem of the EC
platform for EN placement and resource allocation is:

(P1) min
y∈{0,1}J

∑
j

fjyj︸ ︷︷ ︸
(i)

+ max
p∈U(y)

min
x,u

Ep

[
ρ
∑
i,j

di,jxi,j +
∑
i

siui

]
︸ ︷︷ ︸

(ii)

(4)

(i): total EN placement cost (planning cost).

(ii): network delay penalty & unmet demand.

This problem is a tri-level optimization problem (“min-max-min”).
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System model

Problem formulation

s.t. Ω1(y) =

{∑
j∈J

fjyj ≤ B;
∑
j∈J

yj ≥ Kmin

}
(4a)

Ω2(y, λ) =

{
0 ≤ xi,j ≤ Ci,jyj , ∀i, j (4b)

ui +
∑
j

xi,j = λi(y), ∀i (4c)

∑
j

di,jxi,j ≤ ∆iλi(y), ∀i
}
. (4d)

Ω1(y): includes the budget and reliability constraints

Ω2(λ, y): includes the capacity; supply-demand; delay constraints

The demand (i.e., λ(y)) is a function of the first-stage decision in the
planning stage.

Jiaming Cheng INFOCOM 24 February 7, 2025 16 / 30



Solution approach

Exact monolithic reformulation: Exact OPT-Placement

Core ideas of the algorithm:

Figure: Flow chart of Exact OPT-Placement

Goal

Identify the closed-form expression for the optimal objective value
of the dual problem in each area, considering the extreme points and
rays of the feasible region.

The second-stage problem converts from (“max-min”) to
(“max-max”).

Jiaming Cheng INFOCOM 24 February 7, 2025 17 / 30



Solution approach

Exact monolithic reformulation: Exact OPT-Placement

Step 1: Decompose each inner problem based on each area i:
g(y, λ) =

∑
i∈I gi(y, λ),i.e.,

gi(y, λ) = min
x,u

ρ
∑
j

di,jxi,j + siui (5a)

s.t. xi,j ≤ Ci,jyj , ∀j (vi,j) (5b)

ui +
∑
j

xi,j = λi(y), (αi) (5c)

∑
j

di,jxi,j ≤ ∆iλi(y), (βi) (5d)

Goal

Identify the closed-form expression for the optimal objective value
of the dual problem in each area, considering the extreme points and
rays of the feasible region.

The second-stage problem converts from (“max-min”) to
(“max-max”).
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Solution approach

Exact monolithic reformulation: Exact OPT-Placement

The dual problem of gi(y, λ), for area i ∈ I is:

max
vi,j ,αi,βi

∑
j

Ci,jyjvi,j +
[
αi + βi∆i

]
λi(y) (5a)

s.t. vi,j + αi + βidi,j ≤ ρdi,j , ∀j (5b)

αi ≤ si, βi ≤ 0; vi,j ≤ 0, ∀j. (5c)

Goal

Identify the closed-form expression for the optimal objective value
of the dual problem in each area, considering the extreme points and
rays of the feasible region.

The second-stage problem converts from (“max-min”) to
(“max-max”).
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Solution approach

Exact monolithic reformulation: Exact OPT-Placement

Step 2: Dualize the obtained inner “min-max” problem subject to
all constraints within U2(y). (θi,n(y) is obtained from Step 1)

max
pi,n

∑
i∈I

N∑
n=1

pi,nθi,n(y) (6a)

s.t.
N∑

n=1

pi,nξn = 1, ∀i (ωi) (6b)

Γµ
i − µi(y) ≤

N∑
n=1

pi,nξn ≤ Γµ
i + µi(y), ∀i (δ2i , δ1i ) (6c)

(
σ2
i + (µi(y))

2

)
Γσ
i ≤

N∑
n=1

pi,nξ
2
n ≤

(
σ2
i + (µi(y))

2

)
Γ̄σ
i , ∀i (γ2i , γ1i )

(6d)
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Solution approach

Exact monolithic reformulation: Exact OPT-Placement

Step 2: Dualize the obtained inner “min-max” problem subject to
all constraints within U2(y). (θi,n(y) is obtained from Step 1)

min
ω,δ,γ

∑
i

ωi + δ1i (µi(y) + Γµ
i )− δ2i (µi(y)− Γµ

i )

+
(
σ2
i (y) + ((µi(y))

2
)
Γ̄σ
i γ

1
i −

(
σ2
i (y) + (µi(y))

2
)
Γσ
i γ

2
i (6a)

s.t. ωi + (δ1i − δ2i )ξn + (γ1i − γ2i )ξ
2
n ≥ θi,n(y), ∀i, n (6b)

δ1i , δ
2
i , γ

1
i , γ

2
i ≥ 0, ∀i. (6c)
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Solution approach

Exact monolithic reformulation: Exact OPT-Placement

Step 2: Dualize the obtained inner “min-max” problem subject to
all constraints within U2(y). (θi,n(y) is obtained from Step 1) After
step 2,

P1 (“min-max-min”) was reduced to a single-stage minimization
problem.

However, it is still a single-stage mixed integer non-linear
programming problem (MINLP).
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Solution approach

Exact monolithic reformulation: Exact OPT-Placement

Step 3: Linearize the bilinear and trilinear terms by McCormick
linearization.

µi(y) and σ2
i (y) are affine function of the placement decision y.

Bilinear terms involve the product of binary variables and a
non-negative continuous variable (κr = γry).

To linearized the bilinear term, Mκ,y,γ denotes the set involving the
McCormick inequalities for linearizing any bilinear term, where
y ∈ {0, 1}, and γr is non-negative.

Mκ,y,γ =

{
(κ, γ, y) : γry ≤ κr ≤ γ̄ry, γr ≤ γr ≤ γ̄r

γr − (1− y)γ̄r ≤ κr ≤ γr − (1− y)γr
}
, (6)
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Solution approach

Improved variants

According to Algorithm 1, this computation time of solving this
large-scale MILP can be sensitive to the network size.

Improved variant

We aim to generate extreme rays for the feasible region of P1 to
strengthen the obtained reformulation.

Core idea:

The problem after Step 2 is feasible within a region satisfying
associated inequalities:

ωi + (δ1i − δ2i )︸ ︷︷ ︸
δi

ξn + (γ1i − γ2i )︸ ︷︷ ︸
γi

ξ2n ≥ θi,n(y), ∀i, n (7a)

δ1i , δ
2
i , γ

1
i , γ

2
i ≥ 0, ∀i. (7b)

δi and γi are unbounded: identifying the extreme points to achieve
the optimal objective might be time-consuming.
The goal is to find a set of extreme rays (ωi, δ

1
i , δ

2
i , γ

1
i , γ

2
i ) that can

represent the feasible region defined by (7)
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Solution approach

Improved variants

To identify the extreme rays, we will solve the following inequality
systems for k, l ∈ {1, 2, . . . N}.

ωi + δiξk + γjξ
2
k = 0, ∀i, k (8a)

ωi + δiξl + γjξ
2
l = 0, ∀i, l (8b)

ωi + δiξn + γjξ
2
n ≥ 0, ∀n ∈ {1, 2, . . . , N} \ {l, k}. (8c)

W.l.o.g, we assume that ξk < ξl. Define {ξ(1), ξ(2), . . . , ξ(N)} as a
ordered support for the random demand.

Goal: determine the relationship between ξk, ξl, and the other
instances ξn, n ∈ {1, 2, . . . , N} \ {k, l}.
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Numerical results

Performance comparison

In this section, we compare the performance of the proposed DRO-DDU
with the following benchmarks:

HEU: Choose a subset of ENs according to demand, giving priority to
areas with higher demand until the available budget is fully utilized.

BSPA: Deploy as many ENs as possible within the budget.

DET: Deterministic EN placement problem.

SO: Two-stage SO with uniform in-sample distribution.

DRO-DIU: Ψµ
i,j=Ψσ

i,j=0. The original problem reduces to a
two-stage DRO with exogenous stochastic demand.
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Numerical results

Performance analysis

Impacts of the EN placement cost
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Figure: hi: Scaling factor for EN placement cost

Stability: DRO-based models show increased stability compared to
other schemes, especially with higher hi.
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Numerical results

Performance analysis
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Figure: Ratio of variation at each area: θi =
σ̄i

µ̄i
,∀i

Robustness: as θ increases, the gap between these schemes widens
due to the significant deviation of actual demand from its mean.
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Numerical results

Sensitivity analysis

Choice of decision-dependency:

Uni: uniform impact overall areas (Ψi,j =
1
J );

No: No impact: reduce the problem to the traditional DRO problem
with a decision-independent ambiguity set;

Max: Maximum impact on the closest area only (mini di,j).

Decrease:decreasing function of the network delay exp(−di,j
b ).

60 80 100 120 140 160 180 200

B

0

500

1000

1500

2000

A
c
tu

a
l 
T

o
ta

l 
C

o
s
t

Uniform

Decrease

Max

No

20 40 60 80 100 120 140 160 180 200

b

300

400

500

600

700

800

A
c
tu

a
l 
T

o
ta

l 
C

o
s
t

B = 100

B = 120

B = 140

B = 160

B = 180

B = 200

Figure: Choice of decision-dependency: b: decaying factor
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Numerical results

Network size Standard Improved
I = 10; J = 10 31.31s 21.68s

I = 20; J = 10 66.88s 62.95s

I = 20; J = 20 404.11s 331.79s

I = 30; J = 20 1314.8s 901.8s

I = 40; J = 20 3357.2s 2178.28s

Table: Runtime comparison
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Conclusion

Conclusions

Who will benefit from this framework?

Edge infrastructure provider (e.g., Equinix, AT&T): long-term
planning, data center capacity expansion
They can proactively control uncertainties and obtain a more accurate
representation of uncertainty through the lens of Endogeneity.

The ambiguity set in DRO framework can be based on different
metrics. This endogeneity can be also considered in those metrics.
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Conclusion

Exact monolithic reformulation: Exact OPT-Placement

Case 1: αi = si
vi,j ≤ ρdi,jαi + βidi,j . As vi,j ≤ 0, the extreme point of vi,j can
occur at

(i) vi,j = 0
(ii) vi,j = ρdi,jαi + βidi,j if ρdi,j − si − βidi,j < 0

Jiaming Cheng INFOCOM 24 February 7, 2025 28 / 30



Conclusion

Exact monolithic reformulation: Exact OPT-Placement

Case 1: αi = si

vi,j ≤ ρdi,jαi + βidi,j . As vi,j ≤ 0, the extreme point of vi,j can
occur at
(i) vi,j = 0

ρ− si
di,j

< βi ≤ 0, then vi,j ≤ ρdi,j − si < 0 due to assumption

si > ρdi,j . vi,j ≤ 0 becomes redundant and vi,j = ρdi,j−si is the
extreme point.
The optimal value of the objective function is

siλi(y) +
∑
j

Ci,jyj(ρdi,j − si), ∀i. (9)
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Conclusion

Exact monolithic reformulation: Exact OPT-Placement

Case 1: αi = si

vi,j ≤ ρdi,jαi + βidi,j . As vi,j ≤ 0, the extreme point of vi,j can
occur at
(ii) vi,j = ρdi,jαi + βidi,j if ρdi,j − si − βidi,j < 0

βi ≤ ρ− si
di,j

< 0, the inequality ρdi,j − si − βidi,j > 0 holds true.

Thus, we have the vi,j ≤ ρdi,j − si − βidi,j becomes redundant and
vi,j represent the extreme point.
The optimal value of the objective function is[

si +

(
ρ− si

dmin
i

)
∆i

]
λi(y), ∀i. (9)

where dmin = minj′∈J di,j′∀i, we have βi = ρ− si
dmin
i
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Similarly, vi,j reaches its extreme point at either

(i) vi,j = 0
(ii) vi,j = ρdi,j − αi − βidi,j
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Case 2: αi < si

Similarly, vi,j reaches its extreme point at either
(i) If vi,j = 0 for some j, it must hold that ρdi,j − αi − βidi,j ≥ 0,
i.e., αi ≤ di,j(ρ− βi)

we aim to find extreme points for βi such that

si >

{
max
βi

(ρ− βi)di,j ,∀j, s.t βi ≤ 0

}
. (10)

Notably, (ρ− βi)di,j > si when βi → −∞,∀i. Thus, αi = ρdi,j and
βi = 0 represent the extreme points.
The optimal value of the objective function is

siλi(y) +
∑
j

Ci,jyj(ρdi,j − si), ∀i. (11)
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Case 2: αi < si

Similarly, vi,j reaches its extreme point at either
(ii) vi,j = ρdi,j − αi − βidi,j , it implies that the constraint
vi,j ≤ ρdi,j − αi − βidi,j is binding, i.e.,

ρdi,j − αi − βidi,j ≤ 0. (10)

Since βi ≤ 0, βi = 0 represents the extreme point that ensures above
constraints holds. Thus αi must satisfy ρdi,j ≤ αi < si for all j
The optimal value of the objective function is

ρdi,j∗λi(y) +
∑

j:di,j<di,j∗

Ci,jρ(di,j − di,j∗)yj , ∀i. (11)
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Case 2: αi < si
since si > ρdi,j∗ and ρ− si

dmin
i

< ρ− ρdi,j∗

dmin
i

For a given j∗, we have a closed form expression:
ρdi,j∗λi(y) +

∑
j:di,j<di,j∗

Ci,jyjρ(di,j − di,j∗)

ρdi,j∗λi(y) +

[(
ρ− ρdi,j∗

dmin
i

)
∆i

]
λi(y).

For each area i, the optimal inner problem gi(y, λ) corresponding to
the actual realization ξn with probability pi,n can be written as

θi,n(y) =max
j∗∈J

ρdi,j∗ξn +max

{[
ρ− ρdi,j∗

dmin
i

)∆i

]
ξn,∑

j:di,j<di,j∗

Ci,jρ(di,j − di,j∗)yj

}
, ∀i, n. (12)

Intuitive ideas of step 1

The inner obj determines which one of these negative terms imposes a
more stringent requirement, either in terms of the capacity constraint or
the delay constraint.

The whole problem now becomes the “min-max” problem.
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